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As explained in section 2.1, the aggregate demand function for visits to a particular site 
may be written as: 

 
 ( , )m M s x , 
 

where we have dropped explicit reference to the exogenous total assets, A. In section 2.1 and 
appendix 1, it is argued that for a significant number of potential visitors, this function may 
be taken to be approximately smooth in s. In what follows we will adopt this assumption. 
Note also that unless the derivative Ms=0 this demand function gives the maximizer (the site 
owner) a degree of monopoly power.8  

The maximization problem may now be written as:  
 

  
0

 ( , ) ( ( , ) r t

s
Max s M s x C M s x e dt

      (III) 

    s.t. ( ) ( ( , ))x G x Y M x s  . 

 
A necessary condition for solving this problem is the pricing rule:  
 
 ( , ) 0s m s m sM s x s M C M Y M          
 

provided that a positive number of visits is optimal. This necessary condition can be reduced 
to the more concise form:  
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 

      
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where s° is the net revenue maximizing entry price and E(m,s) is the elasticity of demand 
with respect to the entry price. Since this is negative and less than unity9, the last term of s°, 

i.e., 
( , )

1 ( , )
E m s

E m s
 
  

, must be greater than one.  

 
It is not easy to compare the pricing rule (11) with the overall optimal one given by (10) 

let alone its more involved versions, (8) and (9) in section 2.2. However, the overall optimal 
pricing rule of section 2.2 may be approximated by maximizing the sum of consumers' and 
producer's surpluses from the site. This, as demonstrated in appendix 2, generates the 
pricing rule:  

 

                                                                                                                                                                      
monetary measure of the utility benefits gained by Icelanders visiting the sites. This, however, is a 
significantly more complicated exercise which cannot be accommodated within the confines of the 
current paper.  

8  Since each site is unique, this may be regarded as a case of natural monopoly (see e.g. Mill 1848, 
book IV chapter 2, Varian 1987). This, however, does not imply that there may not be imperfect 
substitutes for any given site. If there are, which is likely, the optimal pricing issue, whcih now hast 
o take account of pricing responses at other sites, becomes considerably more complicated.  

9  Note that E(m,s)<-1 for s° to be a possible solution to problem (III).  
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 ( , ) 0m s m sM s x C M Y M       (12) 
 
So, compared to pricing rule that maximizes net revenues from the site, i.e., (11), rule 

(12) drops the term sMs. Since this term is non-positive it is readily seen that maximizing net 
revenues from the site reduces the number of visitors compared to maximizing total benefits 
and, therefore, also implies higher access price.  

To apply the net revenue maximizing rule (11) requires knowledge of the site demand 
function, M(s,x), the natural features impact function, Y(m) and the cost function of visits, 
C(m) as well as the shadow value of the natural features, . Since the demand function is in 
principle estimable from market data, applying (11) or, for that matter (12), appears more 
feasible that to apply the pricing rules (8) to (10).  

3 Conclusions 

Tourist sites in Iceland, as well as around the world, are subject to scarcity for at least two 
reasons; (i) their natural features are negatively affected by visits (reducible resources) and 
(ii) the enjoyment of visits is negatively affected by the number of other visitors (crowding). 
The analysis of this paper shows that that, under these conditions, it is socially beneficial to 
restrict access by charging a positive access fee. If, in addition, visitors generate direct 
outlays, e.g. in terms of maintenance of site infrastructure and facilities, these should also be 
covered by the access fee.  

A simplified version of the socially optimal access fee derived in sections 2.2 is:  
 
 * +( -1)m ms C Y m      (13) 
 

where m denotes the number of visits, Cm, the marginal cost of each visit, Ym the marginal 
damage of visits to the site,  the shadow value of damage and  the shadow value of 
crowding at the site. More detailed versions of the same basic access pricing rule are derived 
in section 2.2.  

Equation (13) expresses the basic principles of optimal pricing of access to a given tourist 
site. The access price should cover the direct outlays, the damage to the natural features of 
the site and the crowding effect of marginal visits. Needless to say, if further dimensions of 
scarcity associated with visits to the site, further terms to cover these need to be added to the 
pricing rule.  

The optimal access price defined by equation (13) or its more advanced variants is not 
some number but a function. This function, and therefore the price, depends inter alia on the 
preferences (utility functions) of the potential visitors, their income and other consumption 
alternatives. It also depends on the number of visitors at each point of time and many other 
variables. Thus, generally the optimal access price may be expected to increase with the 
interest in the sites, income levels and the number of visitors. Moreover, even when these 
exogenous variables are constant, the optimal price will evolve time (usually increase) as the 
natural features of the site converge to their long term optimal equilibrium which will 
prevail in that case.  

� (12)

8	 Since each site is unique, this may be regarded as a case of natural monopoly (see e.g. 
Mill 1848, book IV chapter 2, Varian 1987). This, however, does not imply that there 
may not be imperfect substitutes for any given site. If there are, which is likely, the op-
timal pricing issue, whcih now hast o take account of pricing responses at other sites, 
becomes considerably more complicated. 

9	 Note that E(m,s)<-1 for s° to be a possible solution to problem (III). 
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alternatives. It also depends on the number of visitors at each point of time and many other 
variables. Thus, generally the optimal access price may be expected to increase with the 
interest in the sites, income levels and the number of visitors. Moreover, even when these 
exogenous variables are constant, the optimal price will evolve time (usually increase) as the 
natural features of the site converge to their long term optimal equilibrium which will 
prevail in that case.  
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As before, we consider a given site. Denote the number of potential visitors to the site by 
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visit e(i)=1. The total number of visitors at each point of time, therefore, is 
1

( )
I

i
e i


 . For each 

potential visitor the degree of crowding is the number of other visitors at the site which may 
be denoted by ( ) ( )

j i
m i e j



 . Note that there is one m(i) for each visitor. In general there 
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Given these specifications, the social planner's problem may be expressed as:  
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The first two constraints in (II) are dynamic in the sense that they involve the evolution of the 
state variables, the assets A and the natural features x, respectively. Note that in the 
aggregate budget constraint (the first constraint in (II)) the access prices paid by visitors 
cancel out because it exactly equals the revenue from visits. The third constraint, which is 
really a set of I constraints, defines the degree of crowding at the site as seen by each 
potential visitor. While this set of constraints could easily be substituted out, it is convenient 
to include it explicitly to highlight the social cost of crowding.  

The sum of individual utilities in the integrand in (II) may of course be regarded as a 
particular social welfare function often referred to as classical utilitarianism (Bentham 1789, 
Mill 1863, Dasgupta 1995). The fundamental assumption of classical utilitarianism is that the 
utility functions exist and the social planner knows them. An important implication is that all 
individual are treated equally so classical utilitarianism is inherently egalitarian (Sen 1970, 
1973).  

To clarify the optimal pricing rule to be expressed below, it may be helpful to write a 
Hamiltonian (dynamic Lagrangian) function for problem (II) as: 
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 the shadow value of crowding at the site. More detailed versions of the 
same basic access pricing rule are derived in section 2.2. 

Equation (13) expresses the basic principles of optimal pricing of access 
to a given tourist site. The access price should cover the direct outlays, the 
damage to the natural features of the site and the crowding effect of marginal 
visits. Needless to say, if further dimensions of scarcity associated with visits 
to the site, further terms to cover these need to be added to the pricing rule. 

The optimal access price defined by equation (13) or its more advanced 
variants is not some number but a function. This function, and therefore the 
price, depends inter alia on the preferences (utility functions) of the potential 
visitors, their income and other consumption alternatives. It also depends on 
the number of visitors at each point of time and many other variables. Thus, 
generally the optimal access price may be expected to increase with the in-
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terest in the sites, income levels and the number of visitors. Moreover, even 
when these exogenous variables are constant, the optimal price will evolve 
time (usually increase) as the natural features of the site converge to their 
long term optimal equilibrium which will prevail in that case. 

By the same token, the optimal access price will generally differ across 
sites. It will be highest for sites in high demand that are also sensitive to dam-
age of their natural features and crowding and lower for the others. Thus, it 
is entirely conceivable that there are sites for which the optimal access price 
is zero. 

It is crucial to appreciate that rule (13) and its more advanced variants 
represent the socially optimal price, i.e., the price that maximizes the present 
value of the flow of utilities from visiting the site. It immediately follows that 
free access, far from being a social virtue, is actually socially detrimental in 
many cases. It often leads to an excessive number of visits with the resulting 
excessive deterioration of natural features of the site and crowding which 
will reduce the present value of utilities obtainable from the site. Only in the 
cases where the optimal price is actually zero would free access actually be 
socially optimal. 

The pricing rule expressed by equation (13) and its more advanced vari-
ants maximizes the present value of utilities flowing from the site. It has noth-
ing to do with generating profits from the sites or even paying for the costs 
associated with entry. However, since parts of the pricing rule are charges 
for the impact on the natural features of the site and crowding it is likely, al-
though not certain, the entry fee revenues will be more than sufficient to pay 
for the direct outlays associated with visits to the site. 

If the objective is to maximize net revenues from tourist sites – a reasona-
ble objective for the owners of the sites and even the Icelandic government, 
the pricing rule is:
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where E(m,s) is the elasticity of visits with respect to the access price. It can be shown that 
provided the entry price has an impact on visits, the entry price that maximizes the net 
revenues from the tourist sites exceeds the socially optimal one. Consequently it is also more 
conservative of the natural features of the sites.  

Applying pricing rules (13) or, for that matter, (14) is not easy. To apply the optimal one, 
(13), or its more advanced variants requires knowledge of all the ingredients entering the 
maximization problem (II) including the visitors' utility functions and their impacts on the 
natural features of the sites as well as the site renewal functions and, of course, the cost 
function, C(m). To apply equation (14) is slightly more feasible because the individual utility 
functions are reflected in the demand functions which are in principle observable in the 
market place.  
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are reflected in the demand functions which are in principle observable in the 
market place. 
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Appendix 1
The aggregate demand function

Tourist’s i demand for a visit to a given place is a single step function of the 
access price which may be expressed as: 

	 e(i)=E(s(i);i), e(i)=0,1,

with the step occurring at a certain critical price s*(i), say. The graph of this 
function is illustrated in figure 2 in the main text. 

With I non-identical tourists the number of critical prices may be as high as 
I. It follows that the number of steps in the aggregate demand function will be 
equally numerous. Now the length of the step between prices may be regard-
ed as an inverse measure of the smoothness of the aggregate demand function 
– the shorter this length the more smooth the function. For more concreteness, 
let the highest critical price be smax and the lowest zero. Thus the average 
length of price steps is smax/I. It immediately follows that the average step 
length will be shorter and therefore the aggregate demand for visits smoother 
as the number of potential visitors increases. Figure A.1 attempts to illustrate 
this for six potential visitors. Obviously, the demand curve depicted is more 
smooth than the one for just one or two potential customers. 

Figure A.1. The aggregate demand of six potential visitors

On the basis of these arguments, it should now be clear that the smoothness 
of the aggregate demand function increases with the number of potential vis-
itors and in the limit where the number of potential visitors goes to infinity, 
aggregate demand will converge to a completely smooth function of access 
price. 
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Appendix 2
Maximizing total surplus

Total net surplus from a site is defined as: 
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where λ is the shadow value of the natural features of the site. 


